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Abstrael. We show that for plane parallel capacitors with a large ratio of (arealperimeter'l 
and large plate separation. the excess Capacitance due to fringing fields decreases as the 
electrode spacing decreases. This is contrary to intuition, but is supported by numerical 
wart on disc-shaped capacitors. 

There has been a revival of interest in the calculation of the capacitance of parallel 
plate capacitors. This is in part due to the exigencies of accurate measurement [ 11, 

plates mounted opposite one another on the upper and lower faces of an infinite sheet 
of dielectric of thickness f and dielectric constant E~ have a geometric capacitance 
given by 

(1) 

bn! Fr-ost!y as.., because of the -se =f r.-icro3!r~p &:c*Lt:y [2j. A pair capacitor 

C,.,, = F ~ E ~ S /  f = E ~ E , E , S /  T 
where S is the surface area of one plate and E~ the permittivity of free space. The 
surrounding medium has a dielectric constant E ,  (normally this will be air or vacuum 
with E ,  = I ) ,  and E ,  = E ~ / E ~  is the dielectric constant relative to this medium. The actual 
capacitance C is larger than C,,,, because of the fringing field, and the excess 
capacitance (poorly named the edge capacitance in many publications) is defined as 

(2) cex = C - c,,,, . 
It is normally assumed that this excess capacitance increases as the spacing f decreases. 
One might be tempted to say that this behaviour is intuitively obvious, because as the 
outer surfaces of the electrodes become closer one might expect more stray flux to 
pass from one edge region to the other, as shown schematically in figure I .  The purpose 
of the present letter is to point out that this qualitative assessment is frequently not 
true. As the separation decreases from infinity, the excess capacitance may in fact fall. 

Figure 1. Schematic diagram of a parallel plate capacitor (e2> E , )  showing the fringing 
fields from both the inside races and the outside faces of the electrodes. 
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The effect depends in a subtle way on the shape of the electrodes, and on the dielectric 
constant. 

The brute force method of establishing the dependence on plate separation is by 
direct calculation, as has been done for disc electrodes [I]. Here, the circular symmetry 
allows one to use a specialized result (a generalization of the Love integral equations) 
to obtain accurate computations. Square or rectangular geometries can, in principle, 
be handled by a surface charge simulation method [3], though in a practice it would 
be difficult to obtain adequate accuracy [4]. The stripline geometry can be evaluated 
from an analytic expression [51, but other geometries would appear to be quite 
unamenable to numerical methods. 

Fortunately, there is a subtle but general analytic result which relates the capacitance 
at large separation to the capacitance C, of a single isolated electrode in a vacuum 
[2]. Strictly, we should specify that the second electrode is a conducting sphere of 
infinite radius. This relation is 

with 

E, - 1 
f(Er) = E ,  In(2Er/ ( E ,  + 1 )) . (4) 

We note that equation (3) differs from equation (2.12) of [2] in several details. The 
present version refers to a pair of identical electrodes, rather than to one finite electrode 
and an infinite ground plane. Consequently our thickness f is double the quantity in 
the original equation while the capacitance is halved, so the numerical factors in both 
numerator and denominator have been adjusted accordingly. In addition, the original 
equation was based on the assumption E >  = 1, while here we allow for the general case. 
Since the term ( C m / 2 r e o t f )  in the denominator is a purely geometric factor, it does 
not need an E ,  multiplier. 

We now look at the gradient G of the excess capacitance with respect to the 
reciprocal of the separation. It is convenient to introduce a scaling length I and to 
deal with dimensionless quantities. This leads to 

To begin with, we concentrate on finding the sign of the gradient. We need values 
for C,. These are not easily found for arbitrary electrode shapes, but we can make 
some progress by putting in known lower and upper bounds. For the lower bound we 
have [6] 

c , 2 8 E o m  (6) 

and by choosing /=a, we obtain the following lower bound GI for the gradient 

8 I & , + I  
r f E, 

c,=<---  1 l = V 9 .  (7) 

This quantity is negative for all E, > I .  
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An upper bound G. for the gradient can be found using the result [7] 

ems 4TE,3(  L/57*) (8) 

where L is the perimeter of the electrode. If we set I = L, we now obtain 

When E,Z 1, this upper bound is negative for all regular polygons with five or more 
sides. For square electrodes it switches sign from slightly positive to negative, while 
for strip electrodes and other long, thin figures for which S /  L2+ 0 it is clearly positive. 
Thus we conclude that for all relatively compact electrode shapes, the excess capaci- 
tance falls as the separation is reduced from infinity. 

The disc capacitor is especially easy to deal with because the capacitance of an 
isolated disc is 

C,=8Eoa (10) 

where a is the radius of the disc. The equality signs are satisfied in equations (6) and 
(8), and from ( 5 )  we have the exact result 

8 ~ , + 1  1 
(disc, I = a). G = -  - -- 

T( E, ).f 57 

This result can also be established by executing the first Picard iteration of the relevant 
integral equation ([l] equation (18)), and picking out the coefficient of the term in 
( a / t )  in the limit ( a / r ) + O  to give the first member on the right-hand side. 

Accurate numerical values are available for the disc case [I]. In figure 2 we have 
plotted the dimensionless capacitance ( C e x / ~ O ~ I  E,a) against the reciprocal of the 
dimensionless separation ( a l t )  for wide separations, with E,  as the parameter. The 
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a/t  
Figure 2. Plot of the excess capacitance (in dimensionless form) against the inverse 
separation for a disc capacitor. Points are calculated [I], the solid lines show the initial 
slope from equation (11) and the parameter is the relative dielectric constant e,. 
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initial slopes given by (11) are also plotted, and are seen to be in excellent agreement 
with the computed data. While it would appear that the second derivative of any one 
of the curves is zero as ( a / t ) + O ,  the numerical data is too sparse to confirm this 
conjecture, while the analytical development [2]  is only first order in ( a l t ) ,  and so 
sheds no light on this possibility. 

At the other extreme, we can deal with the stripline geometry. In the limit E,+OO, 

the capacitance of a pair of strip electrodes of breadth a, length I, can he expressed 
in closed form is;, 

C I E ~ E J  = K ’ ( k ) / 2 K ( k )  (12) 

k = e x p ( - m / t )  (13) 

where K ( k )  and K‘(k) are the complete elliptic integrals of the first kind, and end 
effects are ignored. With a wide separation we have k + l ,  K ’ + ? r / 2  and K +  

shrinks to zero. The situation for E,  = 1 can he written in a somewhat similar way [SI, 
hut in this case, the argument k is no longer a simple function of the geometric ratio, 
and we must resort to somewhat tedious expansions of the analytic expressions 
[5,9,10]. These lead to the asymptotic behaviour 

f;ii(8i/iioj. :i is ihezi easy io sxow theit ;:re giadieiii G becomes i m  as ihe wid& 

C / T E o l =  -I/ln(C,/EoI) (14) 

a result that is confirmed by numerical methods. Straightforward calculations then 
indicate that in this case as well, the gradient becomes infinite. We infer that the same 
will also be true for intermediate values of E,. 

In summary, we have established that the excess (or edge) capacitance of a parallel 
plate system does indeed fall as the spacing is reduced from infinity, so long as the 
plates have a large enough ratio of  (area/perimeter*). This is unexpected, hut had been 
implicitly predicted analytically [2 ] .  We have shown that existing numerical results 
[ I ]  fully support the theoretical forecast. Other recent work on disc capacitors [11-13] 
deals with the more conventional case of closely spaced electrodes, so unfortunately 
it does not provide further confirmation. 

I wish to thank Dr E F Kuester (University of Colorado) for some helpful discussion, 
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